
SYMYS
Symys is a C++ and Vulkan-based application designed to advance
the field of 3D modeling by utilizing Signed Distance Fields (SDFs –
detailed explanation on page 4) rather than traditional meshes and
polygons. This innovative approach allows users to create various
geometric primitives and combine them through Boolean
operations such as Union, Difference, and Intersection. Additionally,
Symys offers the capability to smooth these operations, facilitating
the creation of organic models and structures.
To visualize SDFs on the screen, Symys employs a rendering
technique called Sphere-Tracing (detailed explanation on page 4) .
Users can render images and save them, enhancing the practicality
of the application for ongoing projects and final outputs.
Symys provides a versatile environment with an intuitive GUI for
ease of use, making it accessible to novice users. For more
advanced users and developers, it offers the option to engage
directly with the SDF definitions in shader code (GLSL) within the
editor. This dual approach balances accessibility with detailed
control, catering to a wide range of user expertise.
Additionally, Symys allows users to save scenes, ensuring they can
continue their work seamlessly without having to start over each
time. This functionality, combined with its advanced rendering
capabilities, makes Symys a robust tool for both practical and
experimental applications.
By bridging the gap between technical and artistic expertise, Symys
represents a significant advancement in 3D modeling technology,
providing a comprehensive platform for creating stunning models
and scenes.

SYMYS - Mattia Metry 1

Overview

Context

SYMYS - Mattia Metry 2

Example results
SDFs describe surfaces of shapes through mathematical functions,
allowing for manipulation using basic mathematical operations
such as combining and adding functions to create more complex
forms. While SDFs can be a powerful tool, they often require a deep
mathematical understanding, which can be a barrier for many
users.
Symys aims to bridge this gap between technical and artistic
expertise. By offering extensive possibilities to work and interact
with SDFs purely through a GUI, it enables 3D artists without
mathematical knowledge to create stunning models and scenes.
For more technical users and programmers, Symys provides the
option to directly manipulate the GLSL code that defines the SDFs,
granting them complete control over the shapes and forms.
Recent trends in the industry, such as Adobe's release of the beta
version of Project Neo, the growing popularity of Womp3D, and the
public alpha of ConjureSDF, a Blender plugin, indicate that SDFs are
just beginning to gain traction. What sets Symys apart is its nature
as a standalone application built from the ground up with SDFs in
mind, running directly on the user's local machine. This design
ensures high performance and usability.
Moreover, the ability to directly manipulate the SDF code within
Symys offers users a level of control unmatched by other tools.
This combination of a user-friendly GUI and detailed code control
makes Symys a versatile and powerful tool for both artistic and
technical users in the field of 3D modeling.

https://projectneo.adobe.com/
https://womp.com/
https://blendermarket.com/products/conjuresdf

User-friendly interface

SYMYS - Mattia Metry 3

A key feature of Symys is its user-friendly interface, designed to be
intuitive for individuals with experience in 3D software. Symys uses
a layout familiar to many other 3D tools, consisting of a Scene
Hierarchy on the left side of the screen, a Viewport in the center,
and an Inspector on the right side. This arrangement ensures that
users can quickly acclimate to the software.

Additionally, Symys includes a Scene Settings tab on the left side,
where users can adjust general settings such as background color,
light direction, and camera position. The Code Panel is located at
the bottom of the screen, and it can be resized or fully hidden based
on the user's preferences and needs.

To interact with the 3D scene, Symys utilizes well-established 3D
gizmos. The gizmo appears at the center of the selected element
within the Viewport, allowing the user to move and rotate the
element with ease.

To further enhance the user experience, Symys also supports a
variety of shortcuts:

Key Description

F Focus on selected element

Delete Delete selected element

Ctrl+C Copy selected element

Ctrl+V Paste selected element

Ctrl+D Duplicate selected element

Ctrl+Z Undo last action

Ctrl+Y Redo last undone action

Ctrl+S Save current scene

Ctrl+Shift+S Save current scene as

Ctrl+N Create new scene

Ctrl+O Open existing scene

Shift+A Open popup to add element

SDFs

SYMYS - Mattia Metry 4

Sphere-Tracing
Simply put, Signed-distance-fields are mathematical functions,
which take in a point in space and return the distance to the nearest
point on the surface.

The correct mathematical definition is:
SDFs are a special type of implicit surfaces. Implicit surfaces are a
mathematical way to describe surfaces. In the case of Symys, we
use 3 dimensional surfaces, which can generally be described by a
function 𝑓𝑓 𝑝𝑝 :ℝ3 ⟶ ℝ that takes in a point in 3D space 𝑝𝑝 and
returns a scalar value. By defining the function in such a way that
the scalar value is zero at the surface, the function can be used to
test if a point is on the surface, resulting in the following notation:
𝑓𝑓 𝑝𝑝 = 0.
If we now add two additional constraints to the definition of the
function, we get SDFs. The two new constraints are the following:
• 𝑓𝑓 𝑝𝑝 > 0 if the point is outside the surface
• 𝑓𝑓 𝑝𝑝 < 0 if the point is inside the surface

To visualize SDFs on a screen, we use a rendering technique called
Sphere-Tracing. For each pixel on the screen, we define a position
and a direction within the 3D scene, typically using the camera
position and projection matrix. This position serves as the origin of
a ray that we shoot into the scene along the specified direction. By
calculating the distance to the nearest surface using the position
and the combined SDF of all objects, we determine how far the ray
can travel without hitting a surface. At this new position, we
recalculate the distance and move the ray forward again. When the
distance becomes small enough, indicating that the ray is close to a
surface, we color the pixel accordingly.

The image shows a 2D SDF of a circle.
Red means close to the surface inside,
Green means close to the surface outside,
and white is directly on the surface.

The function describing this circle is the following:
float sdCircle(in vec2 p, in float r)
{
 return length(p)-r;
}

2D representation of sphere-tracing. The green line represents the
ray. The radius of the red circles represent the distance to the
surface at each step.

Technical background

SYMYS - Mattia Metry 5

Sphere-tracing can be computationally intensive. To ensure optimal
performance, the entire engine of Symys is built using C++, a
language renowned for its performance and optimization
capabilities. However, rendering complex SDF scenes in real time is
beyond the capabilities of the CPU alone. To achieve real-time
rendering, Symys leverages the GPU using the Vulkan API. This
allows the use of compute shaders—programs that execute on the
GPU in a massively parallel manner. This parallel processing
enables the computation of thousands of pixels simultaneously,
which are then combined into a single image and displayed as a
frame.

In Symys, all actions occur within a defined scene, represented by a
basic node structure known as a scene graph. A node can either be
a group or an object. The root node is always a group, capable of
having child nodes. Users can add new nodes within this root node
to construct the entire scene. Whenever a major change occurs in
the scene graph, the compute shader code is updated, recompiled,
and pushed to the GPU.

Dynamic properties such as positions, scales, and colors are
passed to the shader via uniform buffers. However, significant
changes, such as adding or removing nodes, trigger the
recompilation process. This ensures an optimal workload balance
between the CPU and the GPU, maintaining high performance and
responsiveness.

Symys was implemented using the following third-party libraries:

• ImGui : A bloat-free graphical user interface library. It provides
most GUI elements needed, including buttons and input fields,
which were essential for the UI of Symys.

• ImGuizmo : Integrates seamlessly with ImGui and provides 3D
gizmos.

• ImGuiColorTextEdit : Extends ImGui by adding text editor
functionality, which was used for the code-editing feature in
Symys.

• Cereal : A library for serialization. It was used to serialize the
scene to save it to disk and for the undo/redo system.

• LoadPNG : Use to export and save PNGs to the disk.
• TinyFileDialogs : Allows easy access to the operating system’s

file manager for saving and loading scenes.
• GLM : A math library that includes essential types and functions,

such as vectors and matrices.
• Vulkan : Handles everything regarding the GPU, from executing

shaders and pushing uniform buffers to synchronizing the GPU
and CPU.

• SDL2 : Used for low-level access to inputs such as keyboard and
mouse events, as well as for creating and handling the window.

Reflection

SYMYS - Mattia Metry 6

Future of SYMYS
Developing Symys has been an insightful journey into the realm of
3D modeling and rendering using Signed Distance Fields (SDFs).
The project aimed to bridge the gap between technical and artistic
expertise, providing a robust platform that caters to both novice
users and experienced developers.
One significant challenge encountered was the computational
intensity of sphere-tracing, a critical component for visualizing
SDFs. To address this, I decided to use C++ and Vulkan for the first
time. Learning such a low-level language and API provided new
insights into how CPUs and GPUs work and how to efficiently
manage their resources.
Another critical aspect was designing an intuitive and user-friendly
interface. Symys features a layout familiar to those experienced
with 3D software, including a Scene Hierarchy, Viewport, and
Inspector. I initially underestimated the time needed to create the
UI, but in the end, it was time well spent. Conversely, adding the
code-editing feature turned out to be simpler than anticipated,
which nicely balanced the development timeline.
In conclusion, the development of Symys has been a comprehensive
learning experience, merging technical innovation with user-
centered design. The application successfully bridges the gap
between artistic creativity and technical precision, offering a
powerful tool for 3D modeling and rendering. As SDF-based
modeling continues to evolve, Symys is well-positioned to
contribute significantly to this exciting field.

The release of other SDF-based tools like Adobe’s Project Neo,
Womp3D, and ConjureSDF highlights the growing interest and
potential of SDFs in 3D modeling. This trend has certainly motivated
me to further develop Symys and add new features.

I already have an extensive list of potential new features and
improvements that I’m eager to implement. These range from
improving performance through the use of bounding volume
hierarchy (BVH), expanding the library of primitives, and adding
more advanced Boolean operations, to further enhancing the user
interface.

Another exciting possibility is steering Symys towards becoming a
game engine by adding in scripting support, enabling users to
create interactive games and application directly within Symys.

Additionally, I am curious to explore how SDFs can be utilized and
interacted with in virtual or mixed reality. Making SDFs more
immersive could unlock significant untapped potential.

Regardless of the direction I choose to pursue, I am committed to
continuing the development of Symys. This ongoing work will
ensure that Symys remains a cutting-edge tool in the field of 3D
modeling and rendering.

	SYMYS
	Context
	User-friendly interface
	SDFs
	Technical background
	Reflection

